

Advanced Materials for Next Generation Batteries

Solutions for Battery R&D, Prototyping, Manufacturing, Testing, Recycling

Dr Adelina Braun Technology Manager/Materials Science EMEA Merck Life Science KGaA Battery Tech Expo Sweden, October 2024

Merck

Merck

are

Battery Tech Expo | 10.10.2024

Who we are VIBRANT SCIENCE AND TECHNOLOGY

company with over 350 years of history.

At Merck, science is at the heart of everything we do. It drives the discoveries we make and the technologies we create. 64'000 Employees worldwide

66 Countries

Battery Tech Expo | 10.10.2024

150 Locations

2.5 R&D (€ billion)

Merck

We are Nerre

A vibrant science and technology company

We are known as **Merck** internationally except for the United States and Canada, where we operate as **EMD Serono** in the biopharmaceutical business, **MilliporeSigma** in the life science business and **EMD Electronics** in the high-tech materials business.

Healthcare

- Pioneer in cancer treatment
- Advancing care in immunology
- Global market leader in fertility treatments
- Robust R&D pipeline

Life Science

- Trusted supplier and partner for the scientific community
- From research to large scale production with >300,000 products
- Novel technologies and world-class solutions driving discoveries

Electronics

- Innovations to change the way we access, store, process and display data
- Enabler of new generations of electronic products for our everyday lives
- Supplier of high-tech materials and solutions to the electronic industry

Science & Lab Solutions Portfolio

Manufacturing and distributing quality products and services in an ever-changing and competitive world is a challenge that we help our customers tackle.

Chemistry

Lab Classics

- Solvents
- Inorganics
- High-purity Acids & Bases

Materials Science

- **Inorganic Nanoparticles** High-purity Metals & Salts
- Electrolytes
- Ceramics

Building blocks

Reagents Catalysts

Battery Grade Materials

Chemical Synthesis

Analytical

Mobile Analysis & **Sample Preparation** Mobile Analysis solutions Lab-based workflow solutions Application-specific kits

Chromatography & Instr. Analysis

Chromatography columns Solvents & reagents Sample Prep, SPE/SPME

Analytical Reagents

• Titration Reagents Karl Fischer and Coulometry

Reference Materials

Physical Property Standards Ion Chromatography Std

Lab Separation and Workflow Tools

Analytical

- Millex® Filters
- Cut discs
- Glassware

Water Purification

Milli-Q[®] Benchtop Systems Milli-O® High-flow Lab Water Systems

Greener Alternatives

Re-engineered products **Greener Alternatives** 12 principle aligned products

ICP & AAS Standards

Battery Tech Expo | 10.10.2024

Materials for Energy Applications

- Ready-to-use battery grade
 - Electrode sheets
 - Electrolyte solutions
- Electrode materials
- Electrolyte materials in battery grades with very low water content

- Solid Oxide Fuel Cells – Electrode and Electrolyte
 - materials
 - Fuel Cell catalysts
- Proton exchange membrane fuel cells
 - Membranes, Materials for hydrogen storage

Solar Energy

- Solar energy materials (Perovskites)
- Quantum dots

Hydrogen Storage

- Complex Metal Hydrides
- Metal Organic Frameworks (MOF)s
- Hydrogen Storage Alloys

SigmaAldrich.com/Battery

SigmaAldrich.com/battery-manufacturing

Solutions for Battery R&D and Manufacturing

Material Development

- High-Purity Salts
- Oxides & Ceramics
- Metals & Alloys
- Chalcogenides
- Solvents

Device Prototyping

- Battery Materials
- Inorganic & Metallic Nanomaterials
- Carbon Nanomaterials
- Speciality & Smart Polymers

Battery Manufacturing

- High-Purity Salts
- Oxides & Ceramics
- Metals & Alloys
- Specialty & Smart Polymers
- Solvents

Quality Control

- Analytical Chromatography
- Titration Reagents
- Chromatography & Spectroscopy Reagents
- ICP & AAS Standards
- Ion Chromatography Standards

Deservato fo

Recycling

- Reagents for Hydrometallurgy
- Bio-renewable Solvents

SigmaAldrich.com/Battery

Battery Material Development

Material Development

- Full range of materials for battery development
- Including Monomers, Polymers, and Initiators

Fast charging Graphene Polymer Nanocomposites

- 3-6 min charge rate
 - No toxic metals

•

Poly(anthraquinonyl sulfide) (PAQS)/graphene

- Tunable voltage
- Excellent yield

Pyromellitic dianhydride (PMDA)/graphene

Battery Material Development

3D-Printable Inks for Energy Storage Applications

Illustration of 3D-printed materials generated using product number 916579

Partnering additive manufacturing (3D printing) with functional nanomaterial-based inks for printing electrodes:

- 3D Printable Yttria-stabilized Zirconium(IV) Oxide Ink(#918571)
- 3D Printable Ultra-High Temperature Boron Carbide Ink (#921912)
- 3D Printable Graphene Oxide Ink (#916579)

Battery Material Development

Wrapping Si particles in porous conductive Polyaniline matrix - Si encapsulated in PANI matrix shows improved cycle life

High-performance silicon anode:

- 100 nm silicon particles in crosslinked conducting polyaniline matrix (#918334)
- 1-micron silicon particles in crosslinked conducting polyaniline matrix (#912409)

Si particles in crosslinked conducting polyaniline matrix

11

SigmaAldrich.com/Battery

Device Prototyping

- Ultra-high purity materials and battery grades with very low water content
- Electrode powders with particle sizes in nanomaterials
- Ready-to-use premixed electrolyte formulations

Device Prototyping

A growing selection of Ready-to-use premixed electrolyte formulations

Lithium hexafluorophosphate solution #746735 In Ethylene carbonate and Ethyl methyl carbonate, 1.0 M LiPF6 in EC/EMC=50/50 (v/v), battery grade

LiPF

New!

Lithium hexafluorophosphate solutions

SigmaAldrich.com/Battery

Solid Electrolytes for Solid-state batteries

Electrolyte	Composition	Art.
Al-doped Lithium Lanthanum Zirconate Oxide (LLZO) powder, battery grade	Li _{6.24} La ₃ Zr ₂ Al _{0.24} O _{11.98}	915874
Lithium aluminum titanium phosphate (LATP) powder, battery grade	Li _{1.4} Al _{0.4} Ti _{1.6} (PO ₄) ₃	915394
Lithium lanthanum titanate (LLTO) powder, battery grade	LiLaTiO ₄	916099
Lithium Phosphorus Sulfide (LPS) powder, battery grade	Li ₃ PS ₄	916374
Lithium phosphorus sulfur chloride (LPSCI) powder, battery grade	Li ₆ PS ₅ Cl	916137
Lithium tin phosphorus sulfide (LSPS), battery grade	$Li_{10}SnP_2S_{12}$	915114

New solid-electrolytes, **doped** to improve performance (compatibility and ionic conductivity)

Art	Available	Composition
934720	Now!	Ta-doped LLZO
934763	Now!	I-doped Li ₆ PS ₅ Cl

Recently Introduced R&D Materials

Name	Composition	Art.
Ready-to-Cast Slurry for Lithium-Ion battery (NMC111)	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	928003
Ready-to-Cast Slurry for Lithium-Ion battery (LFP)	LiFePO ₄	928011
Ready-to-Cast Slurry for Lithium-Ion battery	LiCoO ₂	928038
Ready-to-Cast Slurry of Graphite Powder for Lithium-Ion battery	MesoCarbon MicroBeads	928046
Lithium hexafluorophosphate solution 1 M LiPF ₆ in EC/EMC=30/70 (w/w), battery grade	LiPF ₆	930156
Lithium hexafluorophosphate solution 1.2 M LiPF ₆ in EC/EMC= $30/70$ (w/w), battery grade		930164
Lithium hexafluorophosphate solution 1 M LiPE_{c} in EC/DMC=30/70 (w/w), battery grade		930172
Sodium Terephthalate Composite, high-capacity anode for sodium ion	Codium Toronhtholata	022566
Lithium Nickel Manganese Cobalt Oxide (NMC111) Crosslinked Polyanilin	e	932566
Composite	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	932558

SigmaAldrich.com/Battery

Sodium-Ion battery materials

- Innovating across the workflow from electrolytes to electrodes
- High-performance materials
 useful for full-cell testing
- More to come!

Prod. #	Available		
<u>936006</u>	Now		1.0M NaTFSI in EC/DMC 1:1
<u>935999</u>	Now	Electrolytes	1.0M NaTfO in diglyme
935972	Soon!		1.0M NaPF6 in EC/DMC/EMC
<u>933953</u>	Now		NaDFOB
<u>931950</u>	Now	LIECTIOIYLE SAILS	NaClO ₄
<u>934704</u>	Now		Na _{0.44} MnO ₂
<u>932566</u>	Now	— Electrode estivo	Sodium terephthalate
<u>921378</u>	Now	Electrode active	PMDA composite
<u>921386</u>	Now		NTCDA composite
<u>921351</u>	Now		PAQS composite
<u>934739</u>	Now	- Electrodo oboot	Na _{0.44} MnO ₂ cathode
934666	Now	Electrode sheet	Hard carbon anode

ElectroGreen™ Blends product list

Sustainable alternatives Bio-based Solvents

ElectroGreenTM Blends Greener Solvents for Electronics & Energy Applications

A safer switch from harmful solvents without compromising your device performance. Our ElectroGreen[™] blends are made of bio-based safer alternatives to replace synthetic fossil-based solvents with specifications tailored for electronics and energy applications.

- ✓ GC purity >=99%
- ✓ Low residue in evaporation
- ✓ Metal content by ICP
- ✓ Water content (KF)
- ✓ Low acidity
- Low toxicity and VOC (enabling solution-processable techniques outside of fume hood)
- ✓ Accessible cost (to help you with the switch!)

100% Renewable carbon

Sustainably produced

Low toxicity

Battery Recycling

Our Bio-Renewable solvents are sourced from renewable, sustainable biobased materials, significantly lowering their environmental impact.

- Drop-in Replacements
- Bio-Renewable Greener Substitutes

Cyrene™

Other Greener Substitutes

Battery Recycling

 Greener Solvents, incl. REACH compliant greener substitutes for DMF/NMP

Novel dipolar aprotic solvent substitute for NMP and DMF, REACH compliant. Blends available for reduced viscosity.

SigmaAldrich.com/biorenewable

Ľġ

SigmaAldrich.com/battery-manufacturing

Battery Manufacturing

- High-Purity Salts
- Oxides & Ceramics
- Metals & Alloys
- Specialty & Smart Polymers
- Customization
- Custom Manufacturing

Battery Materials for Manufacturing

Sigma-Aldrich.

Merck

Battery R&D and Manufacturing Advanced, high-purity materials for the development and production of

Our innovative, cutting-edge battery materials help cell manufacturers worldwide produce batteries with safer performance, extended run times and increased power and operational life.

SigmaAldrich.com/battery

High-Purity Precursors for Electrode and Electrolyte Materials

-		-	
Cat. No.		Product Description	CAS Numb
Lithium Pr	recursors		
229733	Lithium bromide, powder and chunks	≥99.995% trace metals basis	7550-35-
774138	Lithium difluoro(exalato)borate		409071-16
4499.03	Lithium fluoride	299.99% trace metals basis	7789-24-
450227	Lithium hexafluorophosphate	299.99% trace metals basis, battery grade	21324-40
254274	Lithium hydroxide monohydrate	99.95% trace metals basis	13 10-66-
450197	Lithium hydroxide monohydrate	99.995% trace metals basis	13 10-66-
205524	Lithium metaborate	99.9% trace metals basis	13453-69-
6345.65	Lithium perchlorate	99.99% trace metals basis, battery grade, dry	2151-71-
213241	Lithium sulfide	99.98% trace metals basis	12136-58-
2543.04	Lithium tetraborate	≥99.995% trace metais basis	12007-60-
Metal, Salt	ts and Oxide Precursors		
229393	Aluminum chloride hydrate	99.999% trace metals basis	10124-27-
229407	Aluminum isopropoxide	≥99.99% trace metals basis	555-31-
229415	Aluminum nitrate nonahydrate	99.997% trace metals basis	7784-27-
216593	Ammonium hexafluorophosphate	99.99% trace metals basis	16941-11-
399973	Cobalt(II) acetate	99.995% trace metals basis	71-48-
203106	Cobalt(11) nitrate hexahydrate	99.999% trace metals basis	10026-22-
203114	Cobalt(II,III) oxide	99.995% trace metals basis	1308-06-
203076	Cobalt, granular	99.995% trace metals basis	7440~48-
518158	Iron(II, III) oxide	99.99% trace metals basis	1317-61-

In-house Customization and Development Capabilities

- High-purity inorganics (metals, salts, oxides)
- Anhydrous and beaded materials
- Electrode materials

Material Matters 15.2

Material Matters 17.3

SigmaAldrich.com/materialmatters

Sigma-Aldrich.

Merck

Sign Up and Receive Your Free Battery Pin

Sign up to our mailing list and stay up-to-date on cutting-edge Battery materials for Development, Device Prototyping, and Manufacturing

SigmaAldrich.com/ battery-development

The Life Science business of Merck operates as MilliporeSigma in this U.S. and Canada.

Welcome to our Merck booth

Innovative products Electrolyte Precursors

Battery grade fluorinated solvents and additives

- High purity (>99%), anhydrous (ppm water), low acid content (ppm HF) for battery applications
- Enhances the electrodeelectrolyte interface
- Enables localized highconcentration electrolytes
- Reduces flammability
- Prod. # Available FEMC 934003 Now FEC 935905 Now 934038 Now HFPM ETFE 934046 Now TTE 933961 Now 933988 Now TFTFE 934011 Now DFDEC

Tech. article: "<u>The Rise of</u> <u>Electrolyte Additives in Advancing</u> <u>Lithium-ion Battery Technology</u>"

- Improved the production capability of our core products
- New compositions that perform better at higher operating temperatures

Prod. #	Available	
<u>920371</u>	Now	LiPF ₆
<u>935913</u>	Now	LiBF ₄
<u>930938</u>	Now	LiNO ₃
<u>931969</u>	Now	LiClO ₄
<u>935832</u>	Now	LiFSI